

Mark Scheme (Results)

January 2017

International GCSE Mathematics A 4MA0/2F

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2017
Publications Code 4MA0_2F_1701_MS
All the material in this publication is copyright
© Pearson Education Ltd 2017

General Marking Guidance

- All candidates must receive the same treatment. Examiners
 must mark the first candidate in exactly the same way as they
 mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme.
 Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Types of mark
 - o M marks: method marks
 - A marks: accuracy marks
 - B marks: unconditional accuracy marks (independent of M marks)
- Abbreviations
 - o cao correct answer only
 - ft follow through
 - o isw ignore subsequent working
 - o SC special case
 - o oe or equivalent (and appropriate)
 - o dep dependent
 - o indep independent
 - o awrt answer which rounds to
 - o eeoo each error or omission

No working

If no working is shown then correct answers normally score full marks

If no working is shown then incorrect (even though nearly correct) answers score no marks.

• With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.

If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.

Any case of suspected misread loses A (and B) marks on that part, but can gain the M marks.

If working is crossed out and still legible, then it should be given any appropriate marks, as long as it has not been replaced by alternative work.

If there is a choice of methods shown, then no marks should be awarded, unless the answer on the answer line makes clear the method that has been used.

If there is no answer on the answer line then check the working for an obvious answer.

• Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.

It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.

Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded in another.

International GCSE Maths January 2017 – Paper 2F Mark scheme

Q	Working	Answer	Mark		Notes
1 (a)		35079	1	B1	
(b)		700	1	B1	or (seven) hundreds
(c)		1, 2, 5, 7, 10, 14, 35, 70	2	B2	Award B1 for any four correct factors
(d)	9113-738		2	M1	for using 9113 and 738
		8375		A1	cao
					Total 6 mark
2 (a)		6.5	1	B1	Allow 6.3 to 6.7
(b)		35	1	B1	Allow 33 to 37
(c)		right (angle)	1	B1	
					Total 3 mark

3 (a) (i)	(5, 1)	1	B1
(ii)	(3,-1)	1	B1
(b)	D(3,3) marked	1	B1 Condone omission of <i>D</i> if
			unambiguous.
(c)		2	For $\frac{2}{4}$ or $\frac{1}{2}$ oe or a clear attempt to work out $\frac{\text{distance up}}{\text{distance along}} \text{ for } AB$ (condone omission of negative sign)
	$-\frac{1}{2}$		A1 oe
			Total 5 marks

4	(a)		any parallelogram drawn	1	B1	Accept a square, rectangle or a rhombus
	(b)		pentagon	1	B1	
	(c) (i)		pyramid	1	B1	
	(ii)		8	1	B1	
						Total 4 marks
5	(a)		8	1	B1	oe
			24			Eg, $\frac{4}{12}$, $\frac{2}{6}$, $\frac{1}{3}$
	(b)		any three squares shaded	1	B1	
	(c)	Eg $\frac{30}{100} \times 185$ or 0.3×185 or 18.5×3		2	M1	For a complete method
		100				If M1 not awarded then SCB1 for 129.5
			55.5		A1	
						Total 4 marks

6	(a)	Square width 6 with hole width 4.	correct shape drawn	1	B1	
	(b)		20, 24	1	B1	
	(c)	Eg 11×11-9×9 or 9×4+4 or 24+4×4 or (8, 12, 16, 20, 24), 28, 32, 36, 40		2	M1	For a complete method or For a sequence continued to at least the ninth term, following through a single arithmetical error or For 4 <i>n</i> +4
			40		A1	
	(d)		10	1	B1	
	(e)		W = n + 2	2	B2	oe
						B1 for $n + 2$ or $n = W - 2$
						Total 7 marks
7	(a) (i)		$(2+4) \times 6 - 3$	2	B1	
	(ii)		$2+4\times(6-3)$		B1	
	(b)	Eg $\frac{16}{2} - \frac{18}{3}$ or $8 - 6$ or $\frac{48}{6}$ or $\frac{12}{6}$		2	M1	For a complete method
			2		A1	cao
						Total 4 marks

8	(a)		45 000	1	B1	
	(b)		France	1	B1	
	(c)	height 28000	correct bar drawn	1	B1	any width
	(d)	155 – 26		2	M1	For 155 – 26
		100 20	129		A1	101133 20
	(e)	$\frac{45+1}{2}$ or 23 or $\frac{45}{2}$ or 22.5		2	M1	For an ordered list at least as far as the first 2
			2		A1	
						Total 7 marks
			•	•	•	
9	(a) (i)		69	2	B1	allow –69
	(ii)		98		B1	allow -98
	(b)		-235	1	B1	
	(c)	Eg $\frac{458+14-55-153-214}{5}$ or $\frac{50}{5}$		2	M1	For a complete method
			10		A1	
						Total 5 marks
			•			
10	(a)	12×12.19		2	M1	accept 12 or 12.2 or 12.19 multiplied by a value in the range 9 to 15
			146		A1	accept 108 to 183
	(b)	6.2×2.4×2.5		2	M1	
			37.2		A1	
						Total 4 marks

11	(a)		6	1	B1	
	(b)		triangle drawn (-2,2), (6,2), (0,-4)	2	B2	B1 for any translation of the correct enlarged triangle or an enlargement with the correct centre but wrong SF (for SF≠1)
	(c)			2	M1	For clearly identifying the line $x = 1$ or For a reflection in any vertical line
			triangle drawn $(-3,0) (-1,-3)$, $(-3,-2)$		A1	SCB1 for a correct reflection in $y = 1$
						Total 5 marks
					_	
12		Eg $\frac{715.5}{530} \times 750 \text{ or } 1.35 \times 750 \text{ oe}$ Or $\frac{750}{530} \times 715.5 \text{ or } 1.41(509) \times 715.5 \text{ oe}$ Or $750 \div \frac{530}{715.5} \text{ or } 715.5 \div \frac{530}{750} \text{ oe}$		3	M2	For a complete method If not M2 then M1 for $\frac{715.5}{530}$ or 1.35 oe or $\frac{530}{715.5}$ or 0.740(740) oe or $\frac{750}{530}$ or 1.41(509) oe $\frac{530}{750}$ or 0.706(666) oe $\frac{530}{750}$ or 750×715.5
			1012.50		A1	Accept 1012.5
						Total 3 marks

13	(0)		. 2	1	B1	
13	(a)		$6x^2$	1		
	(b)	Eg $2 \times 12 - 5 \times 3$ or $24 - 15$		2	M1	For a correct substitution
			9		A1	
	(c)	Eg $8 = 2f - 5 \times -6$ or $8 = 2f30$ or $8 = 2f + 30$ or		3	M1	For a correct substitution
		$2f = 8 + 5 \times -6 \text{ or } 2f = -22$				or $f = \frac{e + 5g}{2}$
		$(f =)$ $\frac{8-30}{2}$ or $\frac{-22}{2}$ or $\frac{8+5\times-6}{2}$			M1	
			-11		A1	SCB2 for -11 embedded
						Total 6 marks
				■ I	1	
14	(a)	Eg $\frac{137}{360} \times 100 \text{ or } 137 \div 3.6$		2	M1	For a complete method
			38.1		A1	Accept 38 – 38.1
	(b)	$\frac{5}{100} \times 360 \text{ or } 0.05 \times 360 \text{ or } \frac{360}{100} \times 5 \text{ or } \frac{137}{"38.0()"} \times 5$		2	M1	For a complete method Ft their answer to part (a)
			18		A1	Ft their answer to part (a) rounded or truncated to at least 3SF
						Total 4 marks
					_	
15	(a) (i)		9.746794345	2	B1	Allow 9.7467(94345) rounded or truncated to at least 5SF
	(ii)		9.75		B1	ft if at least 3DP given in (i)
	(b) (i)	$\frac{256}{36-\pi}$ or $\frac{256}{32.8(584)}$		3	M1	For 32.8(58) rounded or truncated to at least 3SF seen
			7.791004515		A1	Allow 7.791(0045) rounded or truncated to at least 4SF
	(ii)		7.79		B1	ft if at least 4SF given in (i)
						Total 5 marks

			<u> </u>			
16	(a) (i)		$\frac{3}{7}$	1	B1	
			7			
	(ii)		9	1	B1	
			$\frac{9}{5}$			
	(b)		35	1	B1	
						Total 3 marks
17	(a)	a, b, d, e	a, b, d, e	2	B2	
						B1 for
						a, e or
						a, b, d or b, d, e or
						a, b, e or a, d, e or
						a, b, c, d, e or a, b, d, e, f
						or a Venn diagram with a, c, e, f
	(1.)			-	D.1	correctly shown
	(b)		c, e, f	1	B1	m . 12
						Total 3 marks
-10			1			
18	(a)	1 - 0.4 - 0.2 - 0.1 or 0.3		3	M1	
		$\frac{1-0.4-0.2-0.1}{2}$ or $\frac{"0.3"}{2}$			M1	dep
		2 2				
			0.15		A1	
	(b)	200×0.4		2	M1	
			80		A1	Note:
						Award M1A1 for 80 out of 200
						Award M1A0 for 80/200
						Total 5 marks

19 (a)			2	M1	For a point marked due south of <i>A</i> or on a correct bearing (within overlay) from <i>B</i> .
		Correct point		A1	within overlay
(b)	168 + 180 or 360 – 12		2	M1	For a complete method or for clearly identifying the reflex angle on the diagram.
		348		A1	cao
(c)		6.25	1	B1	cao
					Total 5 marks
	·				
20	Eg $8y - 2y = 18 - 33$ or $10y = -15$ or $-2y - 8y = 33 - 18$ or $-10y = 15$ or $25x = 150$ or $5x + 4(5x - 33) = 18$ or $33 + 2y + 8y = 18$ or $18 - 8y - 2y = 33$		3	M1	For a correct method to find an equation in <i>x</i> or <i>y</i> . Allow one arithmetical error.
	Eg $5 \times 6 - 2y = 33$ or $5 \times 6 + 8y = 18$ or $5x - 2 \times -1.5 = 33$ or $5x + 8 \times -1.5 = 18$			M1	For a correct substitution Dep on first M1awarded
		x = 6, $y = -1.5$		A1	oe dep on M1
					Total 3 marks
				_	
21 (a)		straight line from (1230, 3.5) to (1315,0)	2	B2	B1 for a single straight line with negative gradient that starts at (1230,3.5) or ends at (1315,0) Ignore lines before 12:30
(b)		1	1	B1	Ft if B1 scored in (a)
(-)			1 -		Total 3 marks

	$\left(\frac{1}{4.1}\right)^{61}$ cos $\left(\frac{1}{4.1}\right)^{61}$	31		A1	ft 4.1 from (a)
	$\cos^{-1}\left(\frac{3.5}{4.1}\right)$ or $\cos^{-1}0.853(658)$				
	$\sin^{-1}\left(\frac{2.1}{4.1}\right)$ or $\sin^{-1}0.512(195)$ or				
	$\tan^{-1}\left(\frac{2.1}{3.5}\right) \text{ or } \tan^{-1}0.6 \text{ or}$			M1	ft 4.1 from (a)
	$\cos F = \frac{3.5}{4.1}$ or $\cos F = 0.853(658)$				
	$\sin F = \frac{2.1}{4.1} \text{ or } \sin F = 0.512(195)$				
(b)	$\tan F = \frac{2.1}{3.5}$ or $\tan F = 0.6$		3	M1	ft 4.1 from (a)
		4.1		A1	allow 4.08(166) rounded or truncated to at least 2DP
	$(EF =)\sqrt{2.1^2 + 3.5^2} \text{ or } \sqrt{16.66}$			M1	dep
22 (a)	$(EF^2 =)2.1^2 + 3.5^2 (= 4.41 + 12.25 = 16.66)$		3	M1	

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom